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Technical Analysis and Theory of Finance

In this paper, we analyze the usefulness of technical analysis, specifically the widely used moving

average trading rule, from an asset allocation perspective. We show that when stock returns

are predictable, technical analysis adds value to commonly used allocation rules that invest fixed

proportions of wealth in stocks. When there is uncertainty about predictability, the fixed allocation

rules combined with technical analysis can outperform the prior-dependent optimal learning rule

when the prior is not too informative. Moreover, the technical trading rules are robust to model

specification, and they tend to substantially outperform the model-based optimal trading strategies

when there is uncertainty about the model governing the stock price.



1 Introduction

Technical analysis uses past prices and perhaps other past statistics to make investment decisions.

Proponents of technical analysis believe that these data contain important information about future

movements of the stock market. In practice, all major brokerage firms publish technical commentary

on the market and many of the advisory services are based on technical analysis. In his interviews

with them, Schwager (1993, 1995) finds that many top traders and fund managers use it. Moreover,

Covel (2005), citing examples of large and successful hedge funds, advocates the use of technical

analysis exclusively without learning any fundamental information on the market.

Academics, on the other hand, have long been skeptical about the usefulness of technical anal-

ysis, despite its widespread acceptance and adoption by practitioners.1 There are perhaps three

reasons. The first reason is that there is no theoretical basis for it, which this paper attempts to

provide. The second reason is that earlier theoretical studies often assume a random walk model

for the stock price, which completely rules out any profitability from technical trading. The third

reason is that earlier empirical findings, such as Cowles (1933) and Fama and Blume (1966), are

mixed and inconclusive. Recently, however, Brock, Lakonishok, and LeBaron (1992), and Lo, Ma-

maysky, and Wang (2000) find strong evidence of profitability in technical trading based on more

data and more elaborate strategies. Statistically, though, it is difficult to show the true effectiveness

of technical trading rules because of a data-snooping bias (see, e.g., Lo and MacKinlay, 1990), which

occurs when a set of data is used more than once for the purpose of inference and model selection.

In its simplest form, rules that are invented and tested by using the same data set are likely to

exaggerate their effectiveness. Accounting for the data-snooping bias, for example, Sullivan, Tim-

mermann, and White (1999) show via bootstrap that Brock, Lakonishok, and LeBaron’s results are

much weakened. Using generic algorithms, Allen and Karjalainen (1999) find little profitability in

technical trading. One could then argue that a bootstrap is subject to specification bias and that

generic algorithms can be inadequate due to inefficient ways of learning. In any case, it appears

that the statistical debate on the effectiveness of technical analysis is unlikely to get settled soon.

Our paper takes a new perspective. We consider the theoretical rationales for using technical

1Some academics take a strong view against technical analysis. For example, in his influential book, Malkiel (1981)
says “technical analysis is anathema to the academic world.”
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analysis in a standard asset allocation problem.2 An investor is to decide how to allocate his

wealth optimally between a riskless asset and a risky one which we call stock. For tractability,

we analyze the profitability of the simplest and seemingly the most popular technical trading rule

– the moving average (MA) – which suggests that investors buy the stock when its current price

is above its average price over a given period L.3 The immediate question is what proportion of

wealth the investor should allocate into the stock when the MA signals so. Previous studies use an

all-or-nothing approach: the investor invests 100% of his wealth into the stock when the MA says

‘buy’, and nothing otherwise. This common and naive use of the MA is, in fact, not optimal from

an asset allocation perspective because the optimal amount should be a function of the investor’s

risk aversion as well as the degree of predictability of the stock return. Intuitively, if the investor

invests an optimal fixed portion of his money into the stock market, say 80%, when there is no

MA signal, he should invest more than 80% when the MA signals a buy, and less so otherwise.

The 100% allocation is therefore unlikely to be optimal. For a log-utility investor, we solve the

problem of allocating the optimal amount of stock explicitly, which provides a clear picture of how

the degree of predictability affects the allocation decision given the log-utility risk tolerance. We

also solve the optimal investment problem both approximate analytically and via simulations in

the more general power-utility case. The results show that the use of the MA can help increase the

investor’s utility substantially.

Moreover, given any investment strategy that allocates a fixed proportion of wealth to the stock,

we show that the MA rule can be used in conjunction with to yield higher expected utility. In par-

ticular, it can improve the expected utility substantially for the popular fixed strategy that follows

Markowitz’s (1952) modern portfolio theory and Tobin’s (1958) two-fund separation theorem. Since

indexing, a strategy of investing in a well-diversified portfolio of stocks, comprises roughly one-third

of the US stock market, and its trend is on the rise worldwide (see, e.g., Bhattacharya and Galpin

(2006)), and since popular portfolio optimization strategies (see, e.g., Litterman, 2003, and Meucci,

2005) are also fixed strategies, any improvement over fixed strategies is of practical importance,

which might be one of the reasons that technical analysis is widely used in practice.4

2In models of information asymmetry, Borwn and Jennings (1989), and Kim and Grundy (2002) show that technical
analysis can have value.

3As time passes, the average price is always computed based on its current price and on those in the most recent
L periods, and hence the average is called the moving average.

4Behaviorial reasons, such as limited attention and optimal learning with limited resources, may explain the use
of simple technical rules in practice.
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However, since the MA, as a simple filter of the available information on the stock price,

disregards any information on predictable variables, trading strategies related to the MA must be in

general dominated by the optimal dynamic strategy, which optimally uses all available information

on both the stock price and on the predictable variables. An argument in favor of the MA could

be that the optimal dynamic strategy is difficult for investors at large to implement due to both

the difficulty of model identification and to the cost of collecting and to processing information.

In particular, it is not easy to find predictable variables, nor are their observations at desired

time frequencies readily available. This gives rise to the problem of predictability uncertainty in

practice. In the presence of such uncertainty, Gennotte (1986), Barberis (2000) and Xia (2001),

among others, show that the optimal dynamic strategy will depend on optimal learning about the

unknown parameters of the model, and that, in turn, will depend on the investor’s prior on the

parameters. In the context of Xia’s (2001) model, we find, interestingly, that, with the use of the

MA rule, one can in fact outperform the optimal dynamic trading strategy when the priors are

reasonable and yet not too informative. This seems due to the fact that the MA rule is less model

dependent, and so it is more robust to the choice of underlying predictable variables.

Furthermore, the usefulness of the MA rule is more apparent when there is uncertainty about

which model truly governs the stock price. In the real world, the true model is unknown to all

investors. But for a wide class of plausible candidates of the true model, the optimal MA can be

estimated easily, while the optimal trading strategy relies on a complete specification of the true

model. When the wrong model is used to derive the optimal trading strategy, we show that the

estimated optimal MA outperforms it substantially.

In typical applications, one usually chooses some ex-ante value as the lag length of the MA.

The question of using the optimal lag has been done only by trial-and-error, and only for the pure

MA strategy that takes an all-or-nothing allocation. Since this allocation itself is suboptimal, the

associated optimal lag is suboptimal too. The asset allocation perspective provided here not only

solves the optimal stock allocation problem for both the pure MA and its optimal combination

with the fixed rules, but also determines the optimal lag of the MA. We find that the fixed rules

in conjunction with the MA are fairly insensitive to the use of the optimal lags, while the optimal

generalized MA is not.

The paper is organized as follows. Section 2 outlines the model and various investment strate-
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gies. Section 3 provides their explicit solutions in the log-utility case, while Section 4 compares

them both approximate analytically and numerically in the power-utility case. Section 5 analyzes

the strategies when there is parameter uncertainty, and Section 6 studies the case when there is

model uncertainty. Section 7 explores the optimal choice of the MA lag length. Section 8 concludes.

2 The Model and Various Investment Strategies

For simplicity, we consider a two-asset economy in which a riskless bond pays a constant rate of

interest r, and a risky stock can represent the aggregate equity market. Because of the ample

evidence on the predictability of stock returns,5 we, following Kim and Omberg (1996), and Huang

and Liu (2006), among others, assume the following dynamics for the cum-dividend stock price St:

dSt

St
= (µ0 + µ1Xt)dt + σsdBt, (1)

dXt = (θ0 + θ1Xt)dt + σxdZt, (2)

where µ0, µ1, σs, θ0, θ1 and σx are parameters; Xt is a predictive variable; and Bt and Zt are standard

Brownian motions with correlation coefficient ρ. Note that θ1 has to be negative to make Xt a

mean-reverting process. The model is a special case of the general models of Merton (1992). In

discrete-time, it is the well-known predictive regression model (e.g., Stambaugh (1999)).

Given an initial wealth W0 and an investment horizon T , the standard allocation problem of an

investor is to choose a portfolio strategy ξt to maximize his expected utility of wealth,

max
ξt

E[u(WT )] (3)

subject to the budget constraint

dWt = rWt dt + ξt(µ0 + µ1Xt − r)dt + ξtσsdBt. (4)

The solution to this problem is the optimal trading strategy. In general, this strategy is a function

of time and the associated state variables. We will refer to it in what follows as the optimal dynamic

strategy, as it varies with time and states.
5There is a huge literature on predictability, examples of which are Fama and Schwert (1977), Campbell (1987),

Ferson and Harvey (1991), Goyal and Welch (2003), and Ang and Bekaert (2007). Kandel and Stambaugh (1996),
Barberis (2000), Pan and Liu (2004), and Huang and Liu (2007) are examples of studies on portfolio choice under
predictability.
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In this paper, we assume the power-utility

u(WT ) =
W 1−γ

T

1− γ
, (5)

where γ is the investor’s risk aversion parameter. In this case, the optimal dynamic strategy is

known (see, e.g., Kim and Omberg, 1996, and Huang and Liu, 2007) and is given by

ξ∗t =
µ0 + µ1Xt − r

γσ2
s

+
(1− γ)ρσx

γσs
[χ(t) + ζ(t)Xt], (6)

where χ(t) and ζ(t) satisfy the following ordinary differential equations:

χ̇(t) + a1ζ(t)χ(t) +
1
2
a2χ(t) + a4ζ(t) + a5 = 0, (7)

ζ̇(t) + a1ζ
2(t) + a2ζ(t) + a3 = 0, (8)

with

a1 =
(1− γ)2

γ
ρ2σ2

x + (1− γ)σ2
x, a2 = 2

(
1− γ

γ

µ1

σs
ρ2σ2

x + θ1

)
,

a3 =
1
γ

(
µ1

σs

)2

, a4 =
1− γ

γ

µ0 − r

σs
ρσx + θ0, a5 =

µ1(µ0 − r)
γσ2

s

,

and the terminal conditions χ(T ) = ζ(T ) = 0.

The assumption that stock returns are independently and identically distributed (iid) over time

has played a major role in finance. It was the basis for much of the earlier market efficiency

arguments, though was known later as only a sufficient condition. Nevertheless, some of the most

popular investment strategies and theoretical models are based on this assumption. Under the iid

assumption, the optimal strategy is

ξ∗fix1 =
µs − r

γσ2
s

, (9)

where µs is the long-term mean of the stock return. This strategy invests a fixed or constant

portion of wealth, ξ∗fix1, into the stock all the time. In discrete-time, this is the familiar suggestion

of Markowitz’s (1952) mean-variance framework and Tobin’s (1958) two-fund separation theorem.6

The strategy is one of the most important benchmark models used in practice today (see, e.g.,

Litterman (2003) and Meucci (2005)). Because of it, passive index investments have become in-

creasingly popular (Rubinstein (2002)). Theoretically, the allocation rule ignores any time-varying

investment opportunities and is clearly not optimal once the iid assumption is violated. A likely
6See Ingersoll (1987) or Back (2006) for an excellent textbook exposition.
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practical motivation for its wide use is as follows. Although the stock returns are predictable, the

predictability is small and uncertain. It could be costly for a small investor to collect news and

reports about Xt whose benefits may outweigh the costs. As a result, the investor may simply

follow a constant allocation rule even though there is a small degree of predictability.

The fixed rule ξ∗fix1 ignores any predictability completely. An interesting question is, then,

whether one can obtain yet another fixed rule that accounts for the predictability. In other words,

how should the investor invest his money when he knows the true predictable process but not

the state variables? Mathematically, this amounts to solving the optimal allocation problem by

restricting ξt to a constant. The solution is analytically obtained as (all proofs are given in the

Appendix)

ξ∗fix2 =
µs − r

γσ2
s − (1− γ)(µ2

1A + 2µ1σsB)
, (10)

where

A =
σ2

x

θ2
1

(
1 +

1− eθ1T

θ1T

)
, B =

ρσx

θ1

(
eθ1T − 1

θ1T
− 1

)
.

Here we see that, for γ = 1, this optimal constant strategy is equal to ξ∗fix1. In other words, for

investors with log-utility, the optimal fixed strategy remains the same as before, even though the

stock returns are predictable, a fact we can explain largely by the myopic behavior dictated by the

log-utility. For γ > 1, however, there is an adjustment in the denominator of (10). In general, the

adjustment can be either positive or negative.

Among the technical trading rules, the rule that is based on the moving average of stock prices

is the most popular one. Let L > 0 be the lag or the lookback period. A moving average (MA) of

the stock price at any time t is defined as

At =
1
L

∫ t

t−L
Su du, (11)

i.e., the average price over time period [t − L, t]. The simplest MA trading rule is the following

stock allocation strategy,7

ηt = η(St, At) =
{ 1, if St > At;

0, otherwise.
(12)

This is well defined when t > L, and can be taken as zero or as another fixed constant when t ≤ L.8

This standard (pure) moving average rule is a market timing strategy that shifts investments
7In practice, the MA rule is computed based on ex-dividend prices which will be analyzed in Section 3.
8The Appendix discusses how we choose the initial value of an MA rule.
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between cash and stock. Almost all existing studies on the MA strategy take a 100% position in

the stock or nothing, i.e., the portfolio weight (on the stock) is ηt. This is clearly not optimal for

two reasons. First, the MA rule should in general be a function of the risk-aversion parameter

γ. Intuitively, γ reflects the investor’s tolerance to stock risk, and it has to enter the allocation

decision as is the case for the earlier optimal fixed strategies. Second, the degree of predictability

must matter. The more predictable the stock, the more reliable the MA rule and hence the more

allocation to the stock.

Other than the pure MA rule, we also consider the following generalized MA (GMA) rule,

GMA(St, At, γ) = ξfix + ξmv · η(St, At), (13)

where ξfix and ξmv are constants. This trading strategy is a linear combination of a fixed strategy

and a pure moving average strategy. It consists of all the previous strategies as special cases. For

example, ξ∗fix1 is obtained by setting ξfix = ξ∗fix1 and ξmv = 0, and ηt is obtained by setting ξfix = 0

and ξmv = 1.9

There are three interesting questions associated with the GMA rule. First, what is the optimal

choice of ξfix and ξmv, and how well does it perform as compared with other fixed strategies? Second,

ξfix being equal to either ξ∗fix1 or ξ∗fix2, whether the optimal choice of ξmv is zero or not indicates

whether there is a gain in the expected utility when the fixed strategy is used in conjunction with

the MA rule. Third, imposing ξfix = 0, the optimal choice of ξmv indicates the optimal amount of

investment based purely on the MA trading signal. If ξmv = 1, the usual application of the MA

with 100% stock allocation is optimal. However, as easily seen from our analysis later, the optimal

value of ξmv is unlikely to be equal to one. These three questions will be answered first analytically

for the log-utility, and then numerically for the power-utility.

Analytically, the distribution of the arithmetic moving average At is very complex and difficult

to analyze. On the other hand, the geometric moving average,

Gt = exp
(

1
L

∫ t

t−L
log(Su) du

)
, (14)

9It should be noted that if the initial state X0 is drawn from the steady-state distribution, the investor will know
X0 when he chooses the constants ξ’s in the GMA rule. Hence, the optimal ξ’s will depend on X0. However, our
goal here is to find the optimal fixed ξ’s that are independent of initial conditions. In other words, we solve in what
follows the optimal allocation problem using the steady state distribution for X0.
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is tractable to allow explicit solutions. In addition, as shown in our later simulations, there are

little performance differences in our main results with the use of either averages. Henceforth, we

will focus our analysis on GMA(St, Gt, γ), i.e., the generalized MA strategy based on the geometric

average.

3 Explicit Solutions: The Log-utility Case

In this section, we provide the explicit solutions of the optimal GMA strategies and compare them

analytically with both the optimal fixed and the optimal dynamic allocations.

Under the stationarity condition for Xt, the wealth process corresponding to the GMA is

dWt

Wt
= [r + GMA · (µ0 + µ1Xt − r)]dt + GMA · σsdBt,

and hence, assuming T > L, we have

log WT = log W0 + rT +
∫ L

0
dt[ξ∗fix1(µ0 + µ1Xt − r − σ2

s

2
ξ∗fix1)]

+
∫ T

L
dt[ξfix(µ0 + µ1Xt − r − σ2

s

2
ξfix)] + ξmvµ1

∫ T

L
dtX̂tηt

+
∫ T

L
dt[ξmv(µ0 + µ1X̄ − r)− σ2

s

2
ξ2
mv − σ2

sξfixξmv]ηt + σs

∫ T

L
(ξfix + ξmvηt)dBt, (15)

where X̂t = Xt − X̄ with X̄ = −θ0/θ1. Then the expected log-utility is10

UGMA = E log WT = log W0 + rT +
(µ0 + µ1X̄ − r)2

2σ2
s

L

+
∫ T

L
dtξfix[µ0 + µ1X̄ − r − σ2

s

2
ξfix] +

∫ T

L
dtξmvµ1E[X̂tηt]

+
∫ T

L
dt[ξmv(µ0 + µ1X̄ − r)− σ2

s

2
ξ2
mv − σ2

sξfixξmv]E[ηt]. (16)

To solve the optimization problem, let

b1 ≡ E[X̂tη(St, Gt)], b2 ≡ E[η(St, Gt)], (17)

where b1 is the covariance between Xt and the moving average strategy ηt and b2 is the probability

10Consistent with footnote 9, the expectation operator E here is taken conditional on information set at t = 0 and
with respect to the initial steady state distribution of X0.
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of St > Gt at any given time. We show in the Appendix that

b1 = EX̂tη(St, Gt) =
CZ

12√
CZ

22

N ′(− mZ
2√

CZ
22

), (18)

b2 = Eη(St, Gt) = N(
mZ

2√
CZ

22

), (19)

where

CZ
12 = (

µ1σ
2
x

2θ2
1

− σxσsρ

θ1
)(1− eθ1L − 1

θ1L
), (20)

CZ
22 = (σ2

s +
µ2

1σ
2
x

θ2
1

− 2µ1σxσsρ

θ1
)
L

3
+ (

µ2
1σ

2
x

2θ3
1

− µ1σxσsρ

θ2
1

)
[
1− 2

(θ1L)2
(1− eθ1L + θ1Leθ1L)

]
, (21)

mZ
2 = (µ0 + µ1X̄ − σ2

s

2
)
L

2
, (22)

and N(·) and N ′(·) are the distribution and density functions of the standard normal random

variable, respectively. Since we assume Xt starts from its steady state distribution,11 it turns out

that b1 and b2 are independent of time t. Therefore, the expected log-utility of (16) becomes

UGMA = E log WT = log W0 + rT +
(µ0 + µ1X̄ − r)2

2σ2
s

L

+ξfix[µ0 + µ1X̄ − r − σ2
s

2
ξfix](T − L) + ξmvµ1b1(T − L)

+[ξmv(µ0 + µ1X̄ − r)− σ2
s

2
ξ2
mv − σ2

sξfixξmv]b2(T − L). (23)

With these preparations, we are ready to answer the three questions raised earlier. In doing so,

we assume the investment horizon T is greater than or equal to the lag length L throughout. This

assumption is clearly harmless.

3.1 Optimal GMA

On the question of finding an optimal fixed strategy that combines a fixed rule with the MA, the

results are given by the following:

Proposition 1 In the class of strategies GMA(St, Gt, γ), the optimal choice of ξfix and ξmv under

11See, e.g., Karatzas and Shreve (1991, p. 358) for a discussion on the steady state. The details of the derivations
are given in the Appendix of this paper.
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the log-utility is

ξ∗fix =
µs − r

σ2
s

− µ1b1

(1− b2)σ2
s

, (24)

ξ∗mv =
µ1b1

b2(1− b2)σ2
s

, (25)

and the associated value function is

U∗
GMA1 = U∗

fix1 +
µ2

1b
2
1

2b2(1− b2)σ2
s

(T − L) ≥ U∗
fix1, (26)

where U∗
fix1 is the value function associated with ξ∗fix1.

Proposition 1 says that the improvement over ξ∗fix1 is always positive by combining a suitable

fixed strategy with the moving average one unless µ1 = 0. In the case of µ1 = 0, the price return is

unpredictable, and the fixed strategy ξ∗fix1 is optimal already. The point is that ξ∗fix1 is not optimal

in general, and so the MA rule can help gain expected log-utility with the combination of another

fixed strategy. Recall that, in the log-utility case, ξ∗fix2 = ξ∗fix1. Hence, Proposition 1 applies to ξ∗fix2

as well, and ξ∗fix1 is the only fixed strategy to compare with.

It is interesting to observe that

ξ∗fix + (b2ξ
∗
mv) = ξ∗fix1. (27)

If the predictable variable Xt is positively related to the stock market with µ1 > 0, the investor

invests less than the standard fixed strategy by the amount of b2ξ
∗
mv since 0 < b2 < 1 and ξ∗mv > 0.

Once the trend is up, as suggested by the moving average rule, the investor is more aggressive than

the fixed strategy by investing an extra amount of (1− b2)ξ∗mv. This is consistent with the intuition

that one should take advantage of the predictability of the stock market once it is detected by the

MA rule.

If one strategy outperforms another over horizon T , it must continue to do so over a longer

time. Hence, U∗
GMA1 − U∗

fix1 must be an increasing function of T . What is striking here is that

this relation is in fact linear in T in the log-utility case since b1, b2, µ1 and σs are all horizon

independent parameters.

Proposition 1 also makes possible an analytical comparison between GMA1 and the optimal

dynamic strategy. Under the log-utility, the optimal dynamic rule (6) is the same as the myopic

10



rule

ξ∗opt =
µ0 + µ1Xt − r

σ2
s

.

By substituting this optimal rule into the wealth process, we obtain the optimal utility

U∗
opt = U∗

fix +
1
2

µ2
1EX̂2

t

σ2
s

T. (28)

Based on the value functions in both cases, we have

U∗
opt − U∗

GMA1 ≥
µ2

1

2σ2
s

[
EX̂2

t −
b2
1

b2(1− b2)

]
(T − L). (29)

Recalling that b1 = EX̂tη and b2 = Eη, we have var(η) = Eη2 − (Eη)2 = b2(1− b2), and hence

b2
1

b2(1− b2)
=

(EX̂tη)2

var(η)
=

(cov(X̂t, η))2

var(η)
≤ E(X̂2

t )var(η)
var(η)

= EX̂2
t .

Therefore, equation (29) is always positive, as it must be, since U∗
opt is the expected utility under

the optimal dynamic strategy. It is seen that the smaller the σ2
x, the smaller the difference. In

other words, the less volatile the predictable variable, the closer the GMA1 to the optimal strategy.

However, it should also be noted that, as σ2
x gets smaller, b1 also gets closer to zero, i.e., the MA

component becomes smaller too.

3.2 Combining A Fixed Rule with MA

Now, we answer the question of whether the moving average strategy can be used in conjunction

with ξ∗fix1 to add value. To address this question, we need to solve the earlier optimization by

imposing the constraint that ξfix = ξ∗fix1. In this case, we have

Proposition 2 In the class of strategies GMA(St, Gt, γ) with ξfix being set at ξ∗fix1, the optimal

choice of ξmv under the log-utility is

ξ∗mv =
µ1b1

b2σ2
s

, (30)

and the associated value function is

U∗
GMA2 = U∗

fix1 +
µ2

1b
2
1

2b2σ2
s

(T − L) ≥ U∗
fix1, (31)

where U∗
fix1 is the value function associated with ξ∗fix1.
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As for U∗
GMA1, U∗

GMA2 is at least as large as U∗
fix1. When there is predictability, it is clear that

U∗
GMA2 is strictly larger than U∗

fix1, implying that the MA rule helps to improve the expected utility,

and does so strictly as long as the stock return is predictable.

An interesting observation is that ξ∗mv in Proposition 2 differs from that in Proposition 1 by only

a factor of 1 − b2 in the denominator. Because 0 < b2 < 1, ξ∗mv is smaller now in absolute value.

This is expected. Because ξ∗fix is set at ξ∗fix1, the risk exposure to the stock market is relatively

high already as ξ∗fix1 > ξ∗fix. Hence, when the MA rule detects an upward trend in the market, the

investor acts more aggressively than ξ∗fix1, but less aggressively than before. Finally, it is seen that

U∗
GMA2 = U∗

GMA1 −
µ2

1b
2
1

2(1− b2)σ2
s

(T − L) ≤ U∗
GMA1 ≤ U∗

opt. (32)

While the second inequality, discussed earlier, is obvious, the first inequality should be true, too.

The fixed component of GMA1 is optimally chosen, and hence its performance must be better than

the GMA strategy with that component being set at ξ∗fix1.

3.3 Optimal Pure MA

As discussed earlier, a standard or pure moving average rule is a market timing strategy that shifts

money between cash and risky assets. Existing studies provide no guidance as to how much one

should optimally invest in the stock even if one believes it is in an up-trend as signalled by the MA

rule. Clearly, a 100% investment in the stock market is not optimal from a utility maximization

point of view. Here we solve the optimal amount explicitly.

Proposition 3 In the class of strategies GMA(St, Gt, γ) with restriction ξfix = 0, the optimal

choice of ξmv under the log-utility is

ξ∗mv =
µs − r

σ2
s

+
µ1b1

b2σ2
s

, (33)

and the associated value function, is

U∗
GMA3 = U∗

fix1 +
(µ1b1 + (µs − r)b2)2 − (µs − r)2b2

2b2σ2
s

(T − L), (34)

which can be either greater or smaller than U∗
fix1, the value function associated with ξ∗fix1.

Consistent with our intuitive reasoning in the introduction, Proposition 3 says that, if an all-or-

nothing investment strategy is taken based on the MA, the optimal stock allocation is unlikely to
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be 100%. Recognizing that 100% is not optimal, one may suggest a two-step approach for making

use of the MA signal. In the first step, one determines the stock allocation, say ξ∗fix1, based on

a standard fixed allocation model, and then, in the second step, apply this in the market-timing

decision: invest that amount into the stock if MA signals a ‘buy’, and nothing otherwise. Equation

(33) says that this fixed amount differs from ξ∗mv in general, and hence the decision is suboptimal

too. The intuition is that one should invest more than that fixed amount if the trend is detected.

Proposition 3 also says that whether the pure MA strategy can outperform the fixed strategy

depends on particular parameter values. It can be verified that, if the following relation about the

risk premium is satisfied,12

µs − r <
µ1b1√
b2 − b2

, (35)

the pure MA strategy does yield a higher expected utility than the fixed strategy ξ∗fix1. However,

with reasonable parameters calibrated from data, the above condition is not true. It implies that

the optimal pure MA strategy usually performs worse than the simple fixed strategy. Indeed, our

later simulations show that the pure MA strategy and its common analogues always perform the

worst. Hence, if the MA rule is to be of any value to investors, it must be used wisely and in

conjunction with the fixed strategies demonstrated by Propositions 1 and 2.

4 Comparison Under Power-Utility

In this section, we extend our earlier analysis to the power-utility case. First, we provide first-order

accurate analytical solutions to the optimal GMA1, GMA2 and GMA3 strategies that provide

insight on the role played by an investor’s risk aversion parameter. Second, we derive second-order

accurate analytical solutions to the strategies that are important for computing their performance

under the power-utility. Finally, using data on S&P500 and three popular predictable variables

from December 1926 to December 2004, we estimate the parameters of the model and examine

how the different investment strategies differ in terms of their economic losses versus the optimal

dynamic strategy.

12To appreciate the intuition behind the condition, we note that the denominator of the right hand side of the
inequality is dominated by 0.25. Therefore, a sufficient condition for pure MA strategy to outperform a fixed rule is
µ1b1 > 4(µs− r), which means that when mean reversion is stronger, the MA strategy is more likely to dominate the
fixed rule. Similarly, if the equity premium is not too large, the MA strategy is more likely to dominate.
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4.1 First-order Approximate Solutions

In the power-utility case, because of the complexity of the utility function, it is infeasible for us

to derive an exact analytical solution for those trading strategies provided in the previous section.

Nevertheless, we can obtain a first-order analytical approximation. The solutions are insightful as

they reveal how the trading strategies are affected by γ, the investor’s risk aversion.

By approximating
∫ T
0 Xtdt,

∫ T
0 Xtηtdt and

∫ T
0 ηtdt with their mean values, we can write the

expected utility under the GMA as

UGMA(γ) ≈ (W0 exp(rT ))1−γ

1− γ
· exp

{
(1− γ)T

[
ξfix(µ0 + µ1X̄ − r)− γσ2

s

2
ξ2
fix + ξmvµ1E[X̂tηt]

+ [ξmv(µ0 + µ1X̄ − r)− γσ2
s

2
ξ2
mv − γσ2

sξfixξmv]Eηt

]}
. (36)

Optimizing this approximated utility function, we obtain

GMA(St, Gt, γ) =
1
γ

GMA(St, Gt, 1). (37)

This says that the optimal generalized MA rules in the γ 6= 1 case is simply a scale of those in the

log-utility case. Hence, much of the qualitative results obtained in the log-utility case carry over

to the power-utility case, with accuracy up to the first-order approximation.

For example, the GMA1 strategy in the power-utility case is still of the earlier form, but with

ξ∗fix =
µs − r

γσ2
s

− µ1b1

γ(1− b2)σ2
s

, (38)

ξ∗mv =
µ1b1

γb2(1− b2)σ2
s

. (39)

This says that we simply scale down the stock investment by 1/γ when the investor is more risk-

averse than the log-utility case. The same conclusion also holds for the GMA2 and GMA3 strategies.

Interestingly, this scaling corresponds precisely to the way by which the usual fixed strategy is

adjusted when the investor’s preference changes from the log- to the power-utility. In particular,

the optimal pure MA rule depends on γ. However, one should keep in mind that the simple inverse

dependance on γ here is not exact, but only approximate with the first-order accuracy.

4.2 Second-order Approximate Solutions

While the previous approximate solutions make apparent the role of γ, they will not be accurate

enough in simulations for measuring the true performance of the optimal GMA strategies, which
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are analytically unavailable. One may propose a numerical method, such as simulation, to compute

the optimal GMA strategies, but this is feasible only for a given St, Gt and t. To evaluate the

performance of these strategies, however, we need to compute the optimal GMA strategies at

hundreds and thousands of draws of St and Gt and time t. Therefore, it is not possible to evaluate

the performance of the optimal GMA strategies numerically without an efficient way to determine

the strategies in the first place. To resolve this problem, we, in what follows, derive alternative

analytical solutions to the strategies. These are more complex than the earlier ones, but are accurate

to the second-order. As a compromise, they will be taken as the true strategies. Simulations will

then be used to evaluate their performances.

Rather than ignoring the second-order terms of the random variables in (15), we approximate

them by Gaussian processes that match both the first and second moments. Then, the power-utility,

U(γ) =
1

1− γ
E

[
W 1−γ

T

]
=

1
1− γ

E [exp((1− γ) log WT )] ,

can be approximated by

U(γ) =
(W0 exp(rT ))1−γ

1− γ
Ufix(ξfix) exp

{
(1− γ)ξmvE[CT + DT + y(ξfix, ξmv)FT ]

+
1
2
(1− γ)2ξ2

mvvar[CT + DT + y(ξfix, ξmv)FT ]

+(1− γ)2ξfixξmvcov(AT + BT , CT + DT + yFT )
}

, (40)

where Ufix(ξfix) is the value function associated with a given fixed strategy ξfix,

y(ξfix, ξmv) = (µ0 + µ1X̄ − r)− 1
2
σ2

sξmv − σ2
sξfix,

and

CT = µ1

∫ T

0
ηtXtdt, DT = σs

∫ T

0
ηtdBt, FT =

∫ T

0
ηtdt,

AT = µ1

∫ T

0
Xtdt, BT = σs

∫ T

0
dBt.

Upon some further algebraic manipulation, we obtain the power-utility value function as

U(γ) =
(W0 exp(rT ))1−γ

1− γ
Ufix(ξfix) exp{(1− γ)ξmv

[
φ0 + φ1ξmv + φ2ξ

2
mv + φ3ξ

3
mv

]}, (41)
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where

φ0 = ECT + (µ0 + µ1X̄ − r − σ2
sξfix)EFT

+(1− γ)ξfixcov(AT + BT , CT + DT + (µ0 + µ1X̄ − r − σ2
sξfix)FT ),

φ1 = −1
2
σ2

sEFT +
1
2
(1− γ)var(CT + DT + (µ0 + µ1X̄ − r − σ2

sξfix)FT )

+(1− γ)ξfixcov(AT + BT ,−1
2
FT ),

φ2 = (1− γ)cov(CT + DT + (µ0 + µ1X̄ − r − σ2
sξfix)FT ,−1

2
σ2

sFT ),

φ3 =
1
2
(1− γ)

σ4
s

4
var(FT ).

Hence, for any given ξfix, we can solve the associated ξ∗mv, which maximizes U(γ) of (41), as

ξ∗mv = − φ2

4φ3
−

[
q +

√
q2 + 4p3/27

2

] 1
3

+
p

3

[
q +

√
q2 + 4p3/27

2

]− 1
3

, (42)

where

p =
φ1

3φ3
− 1

3

(
2φ2

3φ3

) 1
3

, q =
φ0

3φ3
− 2

27
φ0φ1φ2

φ3
3

+
2
27

(
2φ2

3φ3

)3

. (43)

In particular, if ξfix = ξ∗fix1 or ξ∗fix2 or 0, we obtain the corresponding ξ∗mv from (42) that yields

the approximate optimal GMA strategies. For easier reference, we will denote them as Fix1+MA,

Fix2+MA, and Optimal MA, respectively. These three together with ξ∗fix1 and ξ∗fix2, denoted as

Fix1 and Fix2, consist of five strategies whose performances will be examined in detail in the next

subsection.

4.3 Comparison in Calibrated Models

To get further insights into the practical importance of the differences in the five trading strate-

gies, we in this subsection calibrate the model using monthly data on S&P500 and three popular

predictable variables from December 1926 to December 2004, and then use simulation to obtain

the certainty equivalent losses of the strategies as compared with the optimal dynamic one.

Table 1 reports the calibrated parameters (whose estimation details are provided in Appendix

D). As expected, the stock volatility estimates are virtually the same as σs = 0.1946 across the

three predictable models when the predictable variable is taken as the dividend yield, term-spread
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and payout ratio, respectively.13 The same is true for the long-term mean of the stock return (not

shown in the table). However, both the volatility of the predictable variable and its correlation

with the stock return do vary across the models, making the comparison of the strategies more

interesting.

Since utility values are difficult to interpret, we compute below the certainty-equivalent utility

losses versus the optimal dynamic strategy. Normalizing the initial wealth at the level of one

hundred dollars, W0 = 100. Let U∗
opt(W0) be the expected utility based on the optimal dynamic

strategy, and U∗
f (W0) be the expected utility based on any of the five suboptimal trading strategies:

Fix1, Fix2, Fix1+MA, Fix2+MA, and Optimal MA. Since U∗
opt(W0) ≥ U∗

f (W0), there exists CE ≥ 0

such that

U∗
opt(W0 − CE) = U∗

f (W0). (44)

CE can be interpreted as the “perceived” certainty-equivalent loss at time zero to an investor who

switches the optimal strategy to the suboptimal one. In other words, the investor would be willing

to give up CE percent of his initial wealth to avoid investing in the suboptimal strategy. Similar

measures are used by Kandel and Stambaugh (1996), Pástor and Stambaugh (2000), Fleming,

Kirby, and Ostdiek (2001) and Tu and Zhou (2004), among others. In our computation of the

certainty-equivalent losses below, we set the risk aversion γ = 2. In addition, we consider three

ad hoc MA strategies, MA1, MA2 and MA3, whose stock allocations are 100%, Fix1 and Fix2,

respectively when the MA indicates a ‘buy’ signal, and are nothing otherwise. The first of them

is popular in practice. The other two are of interest because they provide information on how

the optimal pure MA might be different from an MA strategy with seemingly well-chosen stock

allocations.

Tables 2 and 3 report the CE losses in percentage points when L = 50 and 200 days, respec-

tively.14 The lag lengths are those used by Brock, Lakonishok, and LeBaron (1992), of which

L = 200 is also the lag length of the popular moving average chart published by Investor’s Busi-

ness Daily, the major competitor of the Wall Street Journal. There are several interesting facts.

First, the losses are substantial across all the strategies relative to the optimal dynamic one, and

they vary substantially, too, across predictable models. When the predictable variable is taken as

13The dividend yield is not the dividend-price ratio. See, e.g., Goyal and Welch (2003) for a detailed description
of these three predictable variables.

14The results when L = 100 are similar and omitted for brevity.
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the dividend yield, the losses (ignoring the ad hoc MA strategies, which will be dropped later for

reasons below) vary from 7.8951% to 50.3555%. The range widens, from 18.0587% to 59.3592%,

when the payout ratio is taken as the predictable variable. However, it narrows down to a low

of 1.5504% and to a high of 42.9099% when the term-spread is taken as the predictable variable.

The large losses suggest strongly that, in an asset allocation problem, it is very important to know

both the true dynamics of stock returns and the associated optimal dynamic strategy. This may

help explain why Wall Street firms spend enormous amounts of money collecting data and doing

research. Kandel and Stambaugh (1996) show that the economic loss can be significant when one

ignores predictability completely when there is in fact a small degree of predictability in the data.

In a continuous-time version of their model, this is apparent when we examine the losses of Fix1

versus the optimal dynamic strategy. However, the optimal dynamic strategy is difficult to identify,

while the fixed rules are more practical and easy to apply. Even if the optimal dynamic rule is

available, the predictable variable(s) may not be available at all time frequencies while the stock

price can be observed virtually continuously during trading hours for implementing any MA-based

strategies.

Second, Fix2 performs better than Fix1, which is not surprising since Fix1 is optimal only under

the iid assumption. The superior performance varies across predictable variables and achieves the

best level when the term-spread is taken as the predictable variable. The performance difference is

of significant economic importance even when T = 10. This suggests that ignoring predictability

entirely can lead to substantial losses in expected utilities even within the class of fixed strategies.

Third, the MA rule adds value to both Fix1 and Fix2, and Fix2+MA is the best suboptimal

strategy. For Fix1, the MA improves its performance substantially by cutting the losses by at least

1–2% as long as T > 10. However, the MA provides only small improvement over Fix2. This does

not suggest necessarily that the practical value of the MA rule is small. In practice, it is extremely

difficult to know precisely what process the stock follows and what variables exactly that drive the

market. On the other hand, long-term stock return and volatility could be estimated with little

error due to the long historical data. This means that Fix1 is a feasible strategy while Fix2 may

not be, at least to a sizable number of investors. By the same token, the dynamic optimal rule is

difficult to identify in practice, as we have commented earlier. Currently, there is one-third of the

stocks are held by index funds and those invested in them are likely to invest their money with
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fixed allocations that resemble Fix1 more than Fix2. In addition, popular portfolio optimization

strategies (see, e.g., Litterman, 2003, and Meucci, 2005) are more like Fix1 than Fix2. To the

extent that this is true, the MA rule can have value. Theoretically, as explored in the next section,

uncertainty about the degree of predictability can make the MA rule add value to the optimal

dynamic rule, too, when the prior is not informative enough. Of course, there might be countless

other reasons for the usefulness of the MA rule since so many successful practitioners put their

money behind it in reality.

Fourth, the lag length makes only a small difference in the results except for the pure MA rule

(and the ad hoc ones) which by definition depend on L more heavily. Since the fixed rules are inde-

pendent of L, their values are the same across Tables 2 and 3. For both Fix1+MA and Fix2+MA,

their values change only from 8.1765% and 7.8951% to 8.1253% and 7.8961%, respectively, in the

dividend yield model with T = 10. When T = 40, the values are larger and so are the differences.

But the larger differences are still less than 0.5%. In contrast, for the Optimal MA, the largest

difference is as high as about 5%, occurring at T = 40.

Fifth, the optimal pure MA rules are much worse than other rules (except the ad hoc MA ones).

For example, when the dividend yield is taken as the predictable variable and L = 50, it has a loss

about twice as large as the fixed strategies rules when T = 10. The qualitative results change little

as T increases. When the term-spread is taken as the predictable variable, the difference can be

four times as large. The least difference, still over 5%, occurs when the payout rate is taken as the

predictable variable. The results suggest strongly that one should not use MA alone, but only use

it in conjunction with the fixed strategies.

Sixth, the ad hoc MA rules, MA1, MA2 and MA3, perform worse than the optimal pure MA.

Theoretically, this is expected because the later is optimal. However, what is of interest here is

that the under-performance can be of significant economic importance. Since these ad hoc rules

perform poorly and do not add much information in comparison with other rules once we keep the

optimal MA, we will eliminate them henceforth.

Finally, let us examine the impact of using either arithmetic moving averages or the ex-dividend

stock prices in the computation of the GMA strategies. To see the influence of the first, Table 4

reports the same valuation as Table 3 except for that it replaces the previous geometric moving

averages with the arithmetic ones. The results are little changed. For example, when T = 40 and
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when the dividend yield is taken as the predictable variable, Fix1+MA has a value of 27.3783%,

which is virtually identical to the earlier value of 27.3408%. The largest difference occurs for the

pure MA rule, which is still less than 0.5%. To see the effects of the dividends, Table 5 computes

the losses of Table 3 by using the the ex-dividend prices instead, with an assumed annual dividend

yield of 3%. Although the differences are larger now, they are confined only to the MA rule. They

make no difference whatsoever for the GMA strategies. Overall, we find that our earlier conclusions

are robust to using either arithmetic averages or ex-dividend stock prices in the implementation of

the GMA rules.

5 Comparison Under Parameter Uncertainty

In previous sections, we assume that an economic agent making an optimal financial decision knows

the true parameters of the model, as is commonly done in a theoretical set-up. However, the true

parameters are rarely if ever known to the decision maker. In reality, model parameters have to

be estimated, and different parameter estimates could provide entirely different results. This gives

rise to the estimation risk associated with any trading strategy. In this section, we analyze the

performance of the various investment strategies under such parameter uncertainty.

One remarkable feature of the pure moving average rule is that it is parameter- and model-free,

and hence it is not subject to estimation risk once given an ex-ante allocation to the stock. Hence,

it will not be surprising that the optimal GMA rule discussed below is quite robust to parameter

uncertainty and does not require any prior estimate of the predictable parameter. In contrast, the

performances of the optimal dynamic rules rely more heavily on how reliable the estimates of the

true parameters are, which depends not only on the sample size, but also on the prior.

In a continuous-time model, it is well known that one can separate the estimation from the

optimization problem (see, e.g., Gennotte (1986)), and parameter uncertainty affects the optimal

portfolio choice through dynamic learning. Barberis (2000) and Xia (2001), among others, show

that this dynamic learning effect not only changes the myopic portfolio holding, but also adds a

new component for dynamic hedging arising from the parameter uncertainty. For tractability, we

follow Xia’s (2001) approach to model uncertainty about predictability to examine the usefulness
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of the GMA rule. In this case, the stock price dynamics can be re-parameterized as

dSt

St
= (µ0 + µ1X̄ + βX̂t)dt + σsdBt, (45)

dXt = (θ0 + θ1Xt)dt + σxdZt, (46)

where β is an unknown parameter to be inferred from the data. Uncertainty associated with β

obviously measures an investor’s uncertainty about predictability. All other parameters are assumed

known. In particular, the long-term mean stock return, µ0 +µ1X̄, is known, where X̄ = −θ0
θ1

is the

long-term mean of Xt. Assume β follows a diffusion process

dβ = λ(β̄ − β)dt + σβdZβ
t , (47)

where the parameters of this process, i.e., the long term mean β̄ and reversion speed λ, are known

to investors. But the investor does not observe the innovation process Zβ
t directly, and has to

infer the realization of β through observations on St and Xt. To complete the model, assume

E(dBtdZ
β
t ) = ρβsdt, E(dZtdZ

β
t ) = ρβxdt, E(dBtdZt) = ρdt. Xia (2001) provides a detailed analysis

of this set-up and the associated properties.

Let It be the investor’s filtration. Adapted to It, the least square estimate of β is Gaussian,

with mean and variance:

bt = E[βt|It], νt = E[(βt − bt)2|It]. (48)

Starting from a Gaussian prior for β with mean b0 and variance ν0, the Bayesian updating rule for

the conditional mean and variance, bt and νt, is (see, Xia, 2001)

dbt = λ(b̄− bt)dt + v1dB̂t + v2dẐt, (49)
dνt

dt
= −2λνt + σ2

β − (v2
1 + v2

2 + 2v1v2ρ), (50)

where

b̄ = β̄,

v1 =
νt(Xt − X̄) + σsσβ(ρβs − ρβxρ)

σs(1− ρ2)
,

v2 =
−νt(Xt − X̄)ρxs + σsσβ(ρβx − ρβsρ)

σs(1− ρ2)
,

dB̂t = dBt +
(Xt − X̄)(βt − bt)

σs
dt,

dẐt = dZt.
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To further simplify the problem, we assume log-utility. In this case, the optimal dynamic stock

allocation can be solved analytically,

ξ∗opt =
µs + bt(Xt − X̄)− r

σ2
s

. (51)

Hence, the optimal log-utility level is

U∗
opt = E log WT =

∫ T

0
E

[
r + ξ∗opt(µ0 + µ1X̄ + β(Xt − X̄)− r)− 1

2
ξ∗2optσ

2
s

]
dt + log W0. (52)

This value function can be computed easily via simulation.

In particular, the optimal fixed rule in the parameter uncertainty case, under the log-utility,

can be explicitly obtained as

ξ∗fix =
µs − r + CT

σ2
s

, (53)

where

CT =
1
T

∫ T

0
E

[
βX̂t

]
dt =

ρβxσβσx

(θ1 − λ)2

[
e(θ1−λ)T − 1

T
− 1

]
.

Intuitively, CT captures the covariance between the predictability parameter β and state variable

Xt.

In our simulations below, we study the performance of the following three strategies in our

parameter uncertainty setting:

1. The optimal dynamic learning rule ξ∗opt as given by (51);

2. The optimal fixed strategy ξ∗fix as given by (53);

3. The GMA rule, a combination of ξ∗fix and the MA, with coefficients:

ξfix = ξ∗fix −
β̄b1

b2(1− b2)σ2
s

, ξmv =
β̄b1

b2(1− b2)σ2
s

, (54)

where b1 and b2 are defined similarly in (18) and (19) where the unknown µ1 is replaced by

the long term mean β̄.

As in Xia (2001), we assume ρβx to be zero. Then, neither the fixed rule nor the GMA rule

depends on the unknown parameter β, and ξ∗fix reduces to the optimal fixed rule ξ∗fix2. In addition,

for the mean-reverting process on β, we assume βt starts from its calibrated long-term mean,

β0 = 2.0715, and set the reverting speed λ = 0.115 and the volatility σβ = 1.226.
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The results are provided in Table 6 with the dividend yield as the predictable variable, L = 200

days and T = 10 years. The first two columns are values for the prior mean and standard error,

the third to the fifth columns are the expected utilities associated with the above three strategies,

and the last two columns are the certainty-equivalent losses (in percentage points) of the fixed and

GMA strategies relative to the optimal learning one. Because ρβx = 0, neither the fixed rule nor the

GMA rule depends on the unknown parameter β, and hence their performances are independent of

priors on β. Of course, the performance of the optimal updating rule depends on the prior. When

the prior mean b0 = 0, both the fixed and the GMA rule under-perform the optimal learning rule

substantially, with losses from 10.67% to 12.40% and 10.07% to 11.80%, respectively. Among the

priors,
√

ν0 = 2 is clearly the best one, and hence it is not surprising to see that the associated

loss is the largest. Interestingly, while it is unclear ex-ante whether or not
√

ν0 = 1 is better than
√

ν0 = 3, the former turns out to provide a higher expected utility for the optimal learning. The

reason is that the model seems to penalize large beta values more than small ones relative to the

true β0. This is why that the losses become smaller when
√

ν0 further increases from 3. When the

prior mean b0 = 4, the results are similar qualitatively. However, when the prior b0 = 6, which is

not too informative about the true β0, the optimal learning rule can now perform worse than either

the fixed strategy or the GMA when
√

ν0 = 1. When the prior mean moves further away at b0 = 7,

the losses increase substantially to over 10%. The optimal learning also depends on the investment

horizon. As the horizon shortens, the optimal learning becomes worse, as shown by Table 7 with

T = 5 years. This is expected because less time makes learning less effective. Overall, to the extent

that uncertainty about predictability is high and the prior is not very informative, the widely used

fixed strategy appears viable as it can outperform the optimal learning one. On the other hand,

the MA rule can always add value to this fixed rule. Therefore, the MA rule or technical analysis

seems capable of capturing information on the market that is useful to investors.

6 Comparison Under Model Uncertainty

In this section, we consider further the case in which the true model is not completely known to

investors. Previously, the smart investors could obtain their optimal trading strategies based on

their assumed true model, but now the true model is unknown both to these smart investors and

to the technical traders. We examine how well the GMA strategy performs in this seemingly very
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realistic case because no one in the real world knows the exact model of stock prices. We find

that the GMA strategy is quite robust to model specifications and outperforms the optimal trading

strategies substantially when they are derived from the wrong models.

Recall that, in previous sections, we have solved the optimal GMA strategy in terms of the

true parameters of the model, but this is not absolutely necessary. Indeed, we show now that the

optimal GMA strategy can be estimated with much less dependence on the model. In other words,

the strategy is robust to a wide class of model specifications. To see this, assume now that we have

a very general stock price process
dSt

St
= Rtdt + σdBt, (55)

where Rt is the instantaneous expected stock return that can be stochastic. For simplicity, σ is

assumed, as before, as the constant volatility parameter. Then the log wealth process of the GMA

strategy is

log WT = log W0+rT +
∫ T

0
(ξfix+ξmvηt)(Rt−r)dt+

∫ T

0
(ξfix+ξmvηt)σdBt− 1

2

∫ T

0
(ξfix+ξmvηt)2σ2dt.

Hence, the expected utility becomes

U = E log WT = log W0 + rT +
(

ξfixb0 + ξmvb1 − 1
2
ξ2
fixσ

2 − ξfixξmvσ
2b2 − 1

2
ξ2
mvσ

2b2

)
T, (56)

where

b0 =
1
T

∫ T

0
E[Rt − r]dt,

b1 =
1
T

∫ T

0
E[ηt(Rt − r)]dt,

b2 =
1
T

∫ T

0
Eηtdt.

(57)

Optimizing the expected utility, we obtain

ξ̂∗fix =
b0

σ2
− b2ξ̂

∗
mv, ξ̂∗mv =

1
σ2(1− b2)

(
b1

b2
− b0

)
. (58)

The parameters defined in (57) can be written in terms of moments,

b0 = E[Rt]− r, b1 = E[ηtRt]− rb2, b2 = E[ηt]. (59)

Thus, assuming stationarity as before, we can estimate them by their sample analogues. For

example, to see how b1 can be estimated, we write

Rt∆t =
∆St

St
− σ∆Bt.
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With the law of iterative expectation, we have

b1 = E[ηtEt(Rt − r)] = E[ηt(
∆St

St∆t
− r)],

which can be estimated by using the corresponding sample average of the right hand side.

Now we are ready to define the estimated optimal GMA strategy as follows (which differs from

the optimal GMA that solves from a given specification of the true model). At any time t, we use the

available sample moments up to that time to estimate the parameters given by (59). Substituting

the estimates into (58), we obtain the estimated optimal GMA strategy ξ̂∗fix + ξ̂∗mvηt. Since the

estimates ξ̂∗fix and ξ̂∗mv vary over time according to the moment estimates at time t, and since they

do not depend on future information, the strategy is a feasible rolling strategy. One should note

that no knowledge of the true model is needed other than the general form of equation (55).

To assess the model uncertainty effect, we assume that the true model is one of the three

calibrated models, but this is unknown to the investors. There are three cases to consider, each of

which corresponds to one of the three models as the true one, respectively. In the first case when

the model with the dividend yield as the predictable variable is assumed the true data-generating

process, Panel A of Table 8 reports the utility losses by using the estimated GMA and the optimal

trading strategies based on the wrong models, the second and third one, respectively.15 As before,

the losses here are measured relative to the true optimal strategy. When T = 5, the largest loss

of the estimate GMA is 5.3326%, far smaller than 17.2875%, the largest of the wrong optimal

strategies.16 It is also smaller than 6.5926%, the smallest of the latter. As investment horizon

increases, the loss increases. The same conclusion also holds when the assumed true mode is the

one with term-spread and payout ratio as the predictable variable, respectively, as indicated by the

results in Panels B and C of the table.

Another interesting question is how well the estimated GMA compares with the estimated fixed

strategy, i.e, ξ̂∗fix = b̂0/σ̂2 with b̂0 and σ̂2 as the moment estimators. The utility losses associated

with ξ̂∗fix are reported in the fourth column of Table 8. They are always larger than those associated

with the GMA strategy, and are substantial so in many cases. This says that the estimated optimal
15For simplicity in making the points here, we have assumed that there is only one wrong model each time. In the

case when there are many candidate models, one can imagine that the true model is still not any of them, and that
the optimal aggregation of all the candidate models gives rise to a single wrong model.

16Although not reported, the estimated GMA differs only slightly from the optimal GMA. For example, in the first
case, when T = 5 and L = 50, their difference is less than 0.5%.
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GMA outperforms the estimated fixed strategy not only when the true model is known, as it is the

case in Section 4, but also when the true model is unknown, as it is the case here.

Overall, our results show that, while the estimated GMA strategy has lower utility than the

optimal one, it outperforms all the optimal strategies when they are derived from wrong models.

Given that the true model is unknown and difficult to identify by investors in the real world, the

robustness of the GMA strategy, or of the technical analysis in general, makes it a valuable tool in

practice.

7 Optimal Lags

In previous sections, we have studied the various GMA strategies with some popular fixed lags. In

this section, we ask how the lag can be optimized. We study this problem under the log-utility with

the aid of the analytical solutions of Section 3. However, the optimal lag itself does not admit an

explicit solution, but can be solved in closed form approximately that provides qualitative insights

on the driving factors. Unlike Sections 5 and 6, we assume as usual in this section that the investor

knows all the true parameters of the model to simplify the analysis.

To study the determinants of the optimal lag, we restrict parameter values to those of practical

interest by assuming

σ2
s >>

µ2
1σ

2
x

θ2
1

− 2µ1σxσsρ

θ1
. (60)

This is because σx is much smaller relative to σs, and because the correlation ρ is close to zero.

This relation holds for all the three calibrated models. Using the unit-free variable x =
√
|θ1|L, we

can approximate equations (20), (21) and (22) by

CZ
12 ≈ C1(1− 1− e−x2

x2
),

CZ
22 ≈ σ2

s

3
L = C2x

2,

mZ
2 =

µs − σ2
s/2

2
L = C3x

2,

where

C1 =
µ1σ

2
x

2θ2
1

− σxσsρ

θ1
, C2 =

σ2
s

3|θ1| , C3 =
µs − σ2

s/2
2|θ1| .
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Therefore, equations (18) and (19) can be approximated as:

b1 ≈ C4 · 1
x

(1− 1− e−x2

x2
) · f(Ax) = C4h(x)f(Ax), (61)

b2 ≈ N(Ax), (62)

where

A =
C3√
C2

=
√

3
2
· µs − σ2

s
2

σs

√
|θ1|

, (63)

C4 =
C1√
C2

, (64)

h(x) =
1
x

(1− 1− e−x2

x2
), (65)

and f(·) is the standard normal density function. Then, we have

Proposition 4 In the class of strategies GMA(St, Gt, γ), if the investment horizon T is long enough,

then the optimal lag Lopt under the log-utility is approximately given by

Lopt ≈
[
|θ1|

(
1 + A2

i

2
+

√
(
1 + A2

i

2
)2 − (

5
12

+
A2

i

3
)2

)]−1

, (66)

where Ai = A√
2

and A for the optimal GMA and Fix1+MA strategies, respectively.

Proposition 4 says that optimal lag is mainly a function of the unconditional mean return µs,

stock volatility σs, and state variable mean reversion speed |θ1| given that T is large. Since µs

and σs are stable across different models, Lopt is mainly driven by the differences in θ1. Figure 1

plots the CE losses of the above two strategies relative to the optimal dynamic one at various lag

lengths when T = 40. Because of differences in θ1, as predicted by Proposition 4, the optimal lag

in the term-spread model is the smallest, and becomes the largest in the payout ratio model. There

are in addition two interesting facts. First, the CE losses are much greater than those reported in

Tables 2 and 3. This is expected because here γ = 1 while γ has a value of 2 in the earlier tables.

The smaller the γ, the more the risk taking, and so the greater the impact of the various stock

allocation strategies on the expected utility. Second, the performance across different lags do not

vary much for Fix1+MA, implying that our earlier utility comparisons are insensitive to the use of

the optimal lags. However, the optimal GMA rule is substantially more influenced by the use of the

optimal lag than Fix1+MA. But this will not affect our earlier results because numerical studies

on this rule are not provided due to the unavailability of its solution in the power-utility case.
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Now consider the optimal lag for the pure MA strategy. Intuitively, given a lag length, the

initial value of the moving average matters little when T is large. However, given T , the initial

value matters significantly in choosing L. This is because L can be chosen as T . Indeed, since the

pure MA under-performs ξ∗fix1 under the practical parameter values, it will be optimal to let L = T .

In this case, the pure MA will be identical to Fix1 since the initial value is chosen as ξ∗fix1. An

alternative initial value for the pure MA is zero. In this case, it can be shown (see the Appendix)

that

Lopt ≈ 2 log(|θ1|T )
A|θ1| (67)

when |θ1|T is large. This makes intuitive sense. The larger the speed of mean reversion, the shorter

the lag length to capture the change of trends.

8 Conclusion

Although technical analysis is popular in investment practice, there are few studies on it. The

empirical evidence is mixed, and we lack a theoretical understanding of why it might be useful.

In this paper, we provide the theoretical justification for an investor to use the moving average

(MA) rule, one of the widely used technical rules, in a standard asset allocation problem. The

theoretical framework seems to offer quite a few insights about technical analysis. First, it answers

the question of how much of his money a technical trader should allocate into the stock market if

he receives a technical buy signal, while previous researchers determine it in ad hoc ways. Second,

it shows how an investor might add value into his investment by using technical analysis, especially

the MA, if he follows a fixed allocation rule that invests a fixed portion of wealth into the stock

market (as dictated by the random walk theory of stock prices or by the popular mean-variance

approach). Third, when model parameters are unknown and have to be estimated from data, the

asset allocation framework illustrates that the combination of the fixed rule with the MA can even

outperform the prior-dependent optimal learning rule when the prior is reasonable and yet not too

informative. Finally, when the true model is unknown, as is the case in practice, we find that the

optimal generalized MA is robust to model specification, and its estimate outperforms the optimal

dynamic strategies substantially when they are derived from the wrong models.
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For tractability, our exploratory study assumes a simple predictable process for a single risky

asset and examines the simplest moving average rule. Studies that allow for both more general

processes (such as those with jumps, factor structures, and multiple assets) and more elaborate

rules are clearly called for. Broadly speaking, asset pricing anomalies such as the momentum

effect can also be regarded as one of the profitable technical strategies that depend on historical

information only. Questions that remain open are what underlying asset processes permit such

anomalies and what the associated optimal investment strategies are. Moreover, related issues of

interest are how past prices and trading volume reveal the strategies of the major market players,

with their incomplete and complementary information, and how their interactions determine future

asset prices. All of these are important and challenging topics for future research.
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Appendix

1 Proof of Equations (10), (18) and (19)

Let yt = log St. Then the model for the predictable variable and stock price process is:
{

dXt = (θ0 + θ1Xt)dt + σxdZt,

dyt = (µ0 + µ1Xt − σ2
s/2)dt + σsdBt,

(A1)

where (Zt, Bt) is a two-dimensional Brownian Motion with correlation coefficient ρ.

To rule out any explosive behavior, we assume θ1 < 0 throughout, which is consistent with em-

pirical applications. Furthermore, we assume that Xt is a stationary process for t ≥ 0. Integrating

the stochastic differential equation (A1) for Xt, we have

Xt = X0e
θ1t − θ0

θ1
(1− eθ1t) + σx

∫ t

0
eθ1(t−s)dZs. (A2)

It follows that Xt is normally distributed with mean and covariance

EXt = EX0e
θ1t − θ0

θ1
(1− eθ1t), (A3)

cov(Xt, Xs) = [V (0)− σ2
x

2θ1
(e−2θ1t∧s) − 1)]eθ1(t+s), (A4)

respectively, where EX0 and V (0) are the mean and variance of X0. Then, the steady state mean

and variance of Xt can be obtained by taking t → +∞ in (A3) and (A4), i.e.,

X̄ = −θ0

θ1
, V̄x = − σ2

x

2θ1
.

The necessary and sufficient condition for Xt to be stationary for t ≥ 0 is that X0 start from the

steady state, i.e., X0 is normally distributed with mean X̄ and variance V (0) = V̄x. Under the

stationarity condition, the first two moments (A3) and (A4) that characterize the distribution of

Xt can thus be simplified as:

EXt = X̄ = −θ0

θ1
, cov(Xt, Xs) = − σ2

x

2θ1
eθ1|t−s|. (A5)

With initial conditions X|t=0 = X0, y|t=0 = y0, we integrate stochastic differential equations

(A1) to obtain




Xt = X0e
θ1t − θ0

θ1
(1− eθ1t) + σx

∫ t

0
eθ1(t−s)dZs,

yt = y0 +
∫ t

0
(µ0 + µ1Xs − σ2

s/2)ds + σsBt.

(A6)
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Let Mt = log Gt, where Gt is the geometric moving average at time t, then

Mt =
1
L

∫ t

t−L
ysds.

To derive (10), we note, under constant holding ξfix2, the wealth process is

log WT = log W0 + rT + ξfix2(µ0 − r − ξfix2σ
2
s/2)T + ξfix2µ1

∫ T

0
Xtdt + ξfix2σsBT . (A7)

Then, optimizing over ξfix2 the power-utility

1
1− γ

E [exp((1− γ) log WT )] =
1

1− γ
exp

[
(1− γ)(log W0 + rT + ξfix2(µ0 − r − ξfix2σ

2
s/2)T )

]

·E exp
[
(ξfix2µ1

∫ T

0
Xtdt + ξfix2σsBT )(1− γ)

]
, (A8)

we obtain the solution

ξ∗fix2 =
(µ0 − r) + µ1E[ 1

T

∫ T
0 Xtdt]

γσ2
s − (1− γ)(µ2

1A + 2µ1σsB)
, (A9)

where

A =
1
T

var[
∫ T

0
Xtdt], B =

1
T

cov[
∫ T

0
Xtdt,BT ].

With (A6) and (A5), A and B can be simplified as

A =
∫ T

0
dt

∫ T

0
ds < XtXs >= − σ2

x

2θ1

∫ T

0
dt

∫ T

0
dseθ1|t−s|

=
σ2

x

θ2
1

(
T +

1− eθ1T

θ1

)
, (A10)

and

B =
∫ T

0
< Xt, BT > dt =

ρσx

θ1

(
eθ1T − 1

θ1
− T

)
, (A11)

where < ·, · > denotes the covariance operator conditional on information at time 0 throughout the

Appendix for brevity, and we have made use of the following fact that for t ≤ T

< Xt, BT > = σx

∫ t

0
eθ1(t−s) < dZs, BT >

= σx

∫ t

0
ρeθ1(t−s)ds =

ρσx

θ1
(eθ1t − 1).

Now, to derive (18) and (19), taking expectation on (A6) and making use of (A5), we obtain

Eyt = y0 + (µ0 + µ1X̄ − σ2
s/2)t,

EMt = y0 + (µ0 + µ1X̄ − σ2
s/2)(t− L

2
)
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when t > L. These results allow us to compute the following second moments for t > L:

< Xt, Xt−L > = − σ2
x

2θ1
eθ1L,

< yt, Xt−L > =
∫ t

0
µ1 < Xs, Xt−L > ds + σxσs

∫ t−L

0
eθ1(t−L−s) < dWs, Bt >

=
∫ t−L

0
µ1 < Xs, Xt−L > ds +

∫ t

t−L
µ1 < Xs, Xt−L > ds + σxσsρ

∫ t−L

0
eθ1(t−L−s)ds

=
µ1σ

2
x

2θ2
1

(2− eθ1(t−L) − eθ1L)− σxσsρ

θ1
(1− eθ1(t−L)), (A12)

< Xt, yt−L > =
∫ t−L

0
µ1 < Xs, Xt > ds + σxσs

∫ t

0
eθ1(t−s) < dWs, Bt−L >

= (
µ1σ

2
x

2θ2
1

− σxσsρ

θ1
)(eθ1L − eθ1t), (A13)

< yt, yt > = σ2
s t +

∫ t

0

∫ t

0
µ2

1 < Xs, Xu > dsdu + 2σs

∫ t

0
µ1 < Xs, Bt > ds

= (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σxσsρ

θ1
)t + (

(µ1σx)2

θ3
1

− 2µ1σsσxρ

θ2
1

)(1− eθ1t),

where we have used the fact < Xs, Bt >= σx

∫ s
0 eθ1(s−u)ρdu, for s ≤ t, an equality

∫ t

0

∫ t

0
< Xs, Xu > dsdu =

σ2
x

θ2
1

t +
σ2

x

θ3
1

(1− eθ1t),

and another equality

< yt, yt−L > = < yt−L, yt−L > +
∫ t

t−L
µ1 < Xs, yt−L > ds (A14)

= (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σsρσx

θ1
)(t− L) + (

(µ1σx)2

2θ3
1

− µ1σsρσx

θ2
1

)(1− eθ1(t−L) + eθ1L − eθ1t).

Next, we compute the following second moments involving Mt using (A12) and (A14):

< Xt,Mt > =
1
L

∫ t

t−L
< ys, Xt > ds

=
1
L

(−µ1σ
2
x

2θ3
1

+
σxσsρ

θ2
1

)(1− eθ1L)− (
µ1σ

2
x

2θ2
1

− σxσsρ

θ1
)eθ1t,

< yt,Mt > =
1
L

∫ t

t−L
< yt, ys > ds

= (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σsσxρ

θ1
)(T − L

2
) + (

(µ1σx)2

2θ3
1

− µ1σxρσs

θ2
1

)(1− eθ1T )

−(
(µ1σx)2

2θ3
1

− µ1σxρσs

θ2
1

)
1

θ1L
(1− eθ1L − eθ1(T−L) + eθ1T ).
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Finally, in order to compute < Mt,Mt >, we note first

Mt =
1
L

∫ t

t−L
ysds =

1
L

∫ L

0
[yt−L + (yt−L+s − yt−L)]ds

= yt−L +
1
L

∫ L

0
ŷt−L+sds,

where ŷt−L+s = yt−L+s − yt−L. Then, we can write < MtMt > as

< Mt,Mt > = < (yt−L +
1
L

∫ L

0
ŷt−L+sds), (yt−L +

1
L

∫ L

0
ŷt−L+sds) >

= < M̂L, M̂L > +
2
L

∫ L

0
< yt−L, yt−L+s > ds− < yt−L, yt−L >,

where M̂t = 1
t

∫ t
0 ysds. Using (A14), we obtain

< M̂t, M̂t > =
1
t2

∫ t

0

∫ t

0
< ys, yu > dsdu

=
t

3
(σ2

s +
(µ1σx)2

θ2
1

− 2µ1σxσsρ

θ1
)

+(
(µ1σx)2

2θ3
1

− µ1σxρσs

θ2
1

)
[
1− 2eθ1t

θ1t
− 2

(θ1t)2
(1− eθ1t)

]
.

For the term
∫ L
0 < yt−L, yt−L+s > ds, equation (A14) can be used for its computation. Hence, we

get the last term for determining the covariance matrix of the trio (Xt, yt,Mt) as

< Mt,Mt > = (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σxσsρ

θ1
)(t− 2L

3
)

+
[
(µ1σx)2

2θ3
1

− µ1σxρσs

θ2
1

] [
1− 1

(θ1L)2
(1− eθ1L + θ1Leθ1L)− 2

θ1L
(1− eθ1L)(1− eθ1(t−L))

]
.

Summarizing above, we have

Lemma 1 For t > L, the trio (Xt, yt,Mt) are jointly normally distributed with mean n =

(n1, n2, n3) given by

n1 = −θ0

θ1
,

n2 = y0 + (µ0 − µ1θ0

θ1
− σ2

s/2)t,

n3 = y0 + (µ0 − µ1θ0

θ1
− σ2

s/2)(t− L

2
),
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and covariance matrix D = (Dij) given by

D11 = − σ2
x

2θ1
,

D22 = (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σxσsρ

θ1
)t + (

σ2
x

θ3
1

− 2µ1σxσsρ

θ2
1

)(1− eθ1t),

D33 = (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σxσsρ

θ1
)(t− 2L

3
)

+(
(µ1σx)2

2θ3
1

− µ1σsρσx

θ2
1

)
[
1− 2

(θ1L)2
(1− eθ1L + θ1Leθ1L)− 2

θ1L
(1− eθ1L)(1− eθ1(t−L))

]
,

D12 = (
µ1σ

2
x

2θ2
1

− σxσsρ

θ1
)(1− eθ1t),

D13 =
1
L

(−µ1σ
2
x

2θ3
1

+
σxσsρ

θ2
1

)(1− eθ1L)− (
µ1σ

2
x

2θ2
1

− σxσsρ

θ1
)eθ1t,

D23 = (σ2
s +

(µ1σx)2

θ2
1

− 2µ1σsσxρ

θ1
)(t− L

2
) + (

(µ1σx)2

2θ3
1

− µ1σsρσx

θ2
1

)(1− eθ1t)

−(
(µ1σx)2

2θ3
1

− µ1σsρσx

θ2
1

)
1

θ1L
(1− eθ1L − eθ1(t−L) + eθ1t).

With Lemma 1, the proof of (18) and (19) follows from

Lemma 2 Let X̂t = Xt − X̄ and Zt = yt −Mt. Then (X̂t, Zt) is normally distributed with mean

mZ = (n1, n2 − n3), and covariance CZ = (CZ
ij) given by

CZ
11 = D11, CZ

22 = D22 + D33 − 2D23, CZ
12 = D12 −D13.

Moreover,

E[1Zt≥0] = N(
mZ

2√
CZ

22

),

E[Xt1Zt≥0] = mZ
1 N(

mZ
2√

CZ
22

) +
CZ

12√
CZ

22

N ′(− mZ
2√

CZ
22

). (A15)

Proof: It is sufficient to prove only equation (A15), which is generally true for any jointly

normal random variable (x, z), with mean (mx,mz), standard deviation (σx, σz), and correlation

ρ, i.e.,

E[x1z≤0] = mxN(
mz

σz
) + ρσxN ′(−mz

σz
). (A16)

Indeed, after standardization,

x̂ =
x−mx

σx
, ẑ =

z −mz

σz
,
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we can write

x̂ = ρẑ +
√

1− ρ2ê,

where ê is the standard normal variable that is independent of ẑ. Generally, for mz ≥ 0, which is

satisfied by our application, where E[Zt] = E[yt]− E[Mt] > 0. Therefore, we have

E[x1z≤0] = E[(σxx̂ + mx)1ẑ≤−mz
σz

]

= mxE1ẑ≤−mz
σz

+ ρσxE[ẑ1ẑ≤−mz
σz

]

= mxN(−mz

σz
)− ρσxN ′(−mz

σz
).

Therefore,

E[x1z≥0] = E[x]− E[x1z≤0] = mxN(
mz

σz
) + ρσxN ′(−mz

σz
)

which proves (A16).

2 Proof of Propositions 1, 2 and 3

Notice first that all three GMA strategies involve MA which is only well defined for t > L. When

t ≤ L, we define them here as the optimal fixed strategy ξ∗fix2 which is the same as ξ∗fix1 under the

log-utility. Thus, the complete GMA rule is

GMA(St, Gt, γ = 1) =
{ ξfix + ξmv · η(St, Gt), for t > L;

ξ∗fix1, for t ≤ L.
(A17)

This makes comparison across the strategies fair since they all start from ξfix1. For example, if the

pure MA had started from zero, it would surely under-perform the other two over [0, L] assuming

a positive risk premium. Analytically, the same starting point makes the expressions simpler. But

this implies that we assign an initial value of ξ∗fix1 for the pure MA strategy, while the initial values

of the MA components in the first two strategies are different (to make the combined GMA start

from the same point). Clearly, for a fixed L, the initial value has little impact if any when T is

large. This is also consistent with the numerical results in Sections 3 and 4. However, when study

optimal lags, the initial value does matter because the optimal lag of pure MA strategy can be

close to T (see Section 7).

With any of the MA strategies, the key is to maximize the expected log-utility, which follows
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from Appendix A.1 and (23), as a function of ξfix and ξmv,

UGMA(ξfix, ξmv) = log W0 + rT +
(µ0 + µ1X̄ − r)2

2σ2
s

L

+ξfix[µ0 + µ1X̄ − r − σ2
s

2
ξfix](T − L) + ξmvµ1b1(T − L)

+[ξmv(µ0 + µ1X̄ − r)− σ2
s

2
ξ2
mv − σ2

sξfixξmv]b2(T − L). (A18)

where b1 and b2 are defined in (18) and (19).

To prove Proposition 1, we need to maximize UGMA(ξfix, ξmv) with respect to both ξfix and ξmv.

The first order conditions are

∂UGMA(ξfix, ξmv)
∂ξfix

|ξfix=ξ∗fix,ξmv=ξ∗mv
= 0,

∂UGMA(ξfix, ξmv)
∂ξmv

|ξfix=ξ∗fix,ξmv=ξ∗mv
= 0, (A19)

which implies

µ0 + µ1X̄ − r − σ2
sξfix − σ2

sξmvb2 = 0,

b1 + (µ0 + µ1X̄ − r)b2 − σ2
s(ξfix + ξmv)b2 = 0.

With some algebra, we obtain the optimal solution:

ξ∗fix =
µ0 + µ1X̄ − r

σ2
s

− µ1b1

(1− b2)σ2
s

,

ξ∗mv =
µ1b1

b2(1− b2)σ2
s

.

Since the value function for log-utility associated with ξ∗fix1 is

U∗
fix1 = log W0 + rT +

(µ0 + µ1X̄ − r)2

2σ2
s

T,

we obtain equation (26) by substituting this into UGMA(ξfix, ξmv) evaluated at the optimal solution

(ξ∗fix, ξ
∗
mv).

To prove Proposition 2, we simply let ξfix = ξ∗fix1, and optimize UGMA(ξ∗fix1, ξmv) over ξmv alone.

Similar algebra yields the solution. The proof of Proposition 3 follows analogously.
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3 Proof of Equation (42)

To maximize U(γ) of (41) over ξmv, it is equivalent to maximize

max
ξmv

f(ξmv) = ξmv(φ0 + φ1ξmv + φ2ξ
2
mv + φ3ξ

3
mv).

The first-order condition is

f ′(ξmv) = φ0 + 2φ1ξmv + 3φ2ξ
2
mv + 4φ3ξ

3
mv = 0, (A20)

which in turn can be transformed to

y3 + py + q = 0, (A21)

where

y = ξmv +
φ2

4φ3

with p and q given in (43). Numerical computations show that, for a wide range of parameters of

interest, we have

q2 +
4p3

27
> 0. (A22)

The solution to cubic equation (A21) is known as Cardano solution (e.g., Curtis (1944)), which is

given by

y∗ = −
[

q +
√

q2 + 4p3/27
2

] 1
3

+
p

3

[
q +

√
q2 + 4p3/27

2

]− 1
3

.

Under condition (A22), this is the unique real root. Hence

ξ∗mv = − φ2

4φ3
+ y∗

which is the same as equation (42). Furthermore, it can be verified that φ1 < 0, and so this solution

to (A20) is indeed a maximum.
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4 Computing the ML Estimators

Following Huang and Liu (2007), the continuously compounded return Rt+1 = log(St+1/St) and

Xt+1 are jointly Gaussian, and the log-likelihood function, conditional on X0, can be written as

£ (Θ) =
T∑

t=1

log f (Rt, Xt|Xt−1; Θ)

= −T

2
(
2 log 2π + log σ2

1 + log σ2
2 + log

(
1− ρ2

12

))

− 1
2

(
1− ρ2

12

)
T∑

t=1

{(Rt − a11 − a12Xt−1)
2

σ2
1

+
(Xt − b11 − b12Xt−1)

2

σ2
2

−2ρ12 (Rt − a11 − a12Xt−1) (Xt − b11 − b12Xt−1)
σ1σ2

}
,

where Θ ≡ (a11, a12, b11, b12, σ1, σ2, ρ12) with

a11 = (µ0−1
2
σ2

s−
µ1θ0

θ1
)∆t+

µ1θ0

θ2
1

(
eθ1∆t − 1

)
, a12 =

µ1

θ1

(
eθ1∆t − 1

)
, b11 =

θ0

θ1

(
eθ1∆t − 1

)
, b12 = eθ1∆t,

σ2
1 = (σ2

s +
µ2

1

θ2
1

σ2
x −

2µ1

θ1
ρσsσx)∆t +

1
2θ1

(e2θ1∆t − 1)
µ2

1

θ2
1

σ2
x +

2µ1

θ2
1

(eθ1∆t − 1)(ρσsσx − µ1

θ1
σ2

x),

σ2
2 =

σ2
x

2θ1
(e2θ1∆t − 1),

ρ12σ1σ2 =
µ1

2θ2
1

(eθ1∆t − 1)2σ2
x +

ρσsσx

θ1
(eθ1∆t − 1).

Let Y be a T × 2 matrix formed by observation on Rt and Xt, and Z be formed by a T-vector

of ones and the T values of Xt−1. Define

B =
(

a11 b11

a12 b12

)
, Σ =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
. (A23)

Then, the estimator of B is B̂ = (X ′X)−1X ′Y , and that of Σ is Σ̂ = (Y −XB̂)′(Y −XB̂)/T . The

estimator for the original parameters, such as µ0, can be backed out from these estimates.
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5 Proof for the Optimal Lags

Now we need to optimize equation (26), (31) and (34) over L. To prove Proposition 4, consider

U∗
GMA1 − U∗

fix1 and U∗
GMA2 − U∗

fix1. Ignoring some constants, the target functions are

U1 =
b2
1

b2(1− b2)
(1− L

T
) = V1(1− L

T
), and U2 =

b2
1

b2
(1− L

T
) = V2(1− L

T
), (A24)

where V1 and V2 are defined accordingly. Since V1 and V2 are T independent, so are their maximum

over L. As T is large, 1− L
T can be ignored, and hence we need only to maximize V1 and V2.

The first-order condition for maximizing V2 is

V ′
2 =

2b1b
′
1b2 − b2

1b
′
2

b2
2

= 0. (A25)

Substituting those approximate expressions (61) and (62) for b1 and b2, we have

2h′(x)f(Ax)− 2Axh(x)f(Ax)− Ah(x)f2(Ax)
N(Ax)

= 0. (A26)

This is a transcendant equation that is difficult to solve without further simplifications. It can be

shown that the third term is dominated by the first one when x < 1, and by the second one when

x > 1. Ignoring the third term, we need only to optimize

b1 = h(x) · f(Ax). (A27)

The Taylor expansion for h(x) is

h(x) =
x

2
− x3

6
+

x5

24
+ · · · , (A28)

which implies that (A27) can be approximated by

(
x

2
− x3

6
+

x5

24
) exp(−A2x2

2
). (A29)

Taking derivative with respect to x and letting it be equal to zero, we obtain, after ignoring higher-

order terms,

(
5
24

+
A2

6
)x4 − 1 + A2

2
x2 +

1
2

= 0.

The smaller root of the above quadratic equation, which corresponds to the maximum, is the

solution for the second case of Proposition 4.
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To provide solution for the first case, we now maximize V1. Its denominator can be approximated

by N(Ax) ·N(−Ax), and hence

V1 ≈ h2(x)f2(Ax)
N(Ax)N(−Ax)

=
1

C ·N(Ax)

[
h(x)

√
f(Ax)

]2
.

where we have used the approximation N(−Ax) ≈ C · f(Ax) for Ax > 0 and large. Similar to the

earlier case, we can ignore N(Ax), and hence the target function becomes to h(x) ·
√

f(Ax). This

has the same form as (A27) with A√
2

plays the role of earlier A. Therefore, the solution follows.

Finally, to derive (67), we need to maximize U3 = U∗
GMA3 − (µs−r)2

2σ2
s

L. Similarly, this can be

replaced by a target function

V3 = [µ1C4h(x)f(Ax) + C5N(Ax)] · (1− x2

|θ1|T )

= [µ1C4 · 1
x

(1− 1− e−x2

x2
)f(Ax) + C5N(Ax)] · (1− x2

|θ1|T )

≈ C5N(Ax) · (1− x2

|θ1|T ), (A30)

where the last approximation is due to the dominance of the second term in the bracket. The

first-order condition is

f(Ax) · (1− x2

|θ1|T )− 2
|θ1|T xN(Ax) = 0. (A31)

Since there is only one solution, we can verify that

|θ1|T >> 1, Ax >> 1,
x2

|θ1|T → 0, (A32)

and hence we can reduce the first-order condition to Af(Ax) ≈ 2
|θ1|T x. This implies (67).
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Table 1: Calibrated Model Parameters

The table reports parameter estimates for the following cum-dividend price process,

dSt

St
= (µ0 + µ1Xt)dt + σsdBt,

dXt = (θ0 + θ1Xt)dt + σxdZt,

where µ0, µ1, σs, θ0, θ1 and σx are parameters, Xt is a predictive variable, and Bt and Zt are standard
Brownian motions with correlation coefficient ρ. The estimation is based on monthly returns on
S&P500 from December 1926 to December 2004, and on Xt which is the dividend yield, term-spread
and payout ratio, respectively, in the time period.

Dividend yield Term-spread Payout ratio

µ0 0.0310 0.0969 0.2824
µ1 2.0715 1.2063 -0.2917
σs 0.1946 0.1947 0.1942
θ0 0.0100 0.0087 0.0140
θ1 -0.2532 -0.5270 -0.0296
σx 0.0122 0.0132 0.0497
ρ -0.0730 0.0014 -0.0031



Table 2: Utility Losses Versus Optimal Strategy (L = 50)

The table reports the utility losses, measured as percentage points of initial wealth, that one is
willing to give up to switch from a given strategy to the optimal dynamic one. The moving average
(MA) lag length L is set equal to 50 days. Fix1 is the standard fixed allocation rule and Fix2 is
such a rule accounting for predictability. Fix1+MA and Fix2+MA are those combined with the
MA. Optimal MA is the strategy that uses the MA optimally without any combination of fixed
rules, and MA1, MA2 and MA3 are ad hoc MA only strategies whose stock allocations are 100%,
Fix1 and Fix2, respectively when the MA indicates a ‘buy’ signal, and are nothing otherwise.

Dividend yield Term-spread Payout ratio

T=10

Fix1 8.8445 3.8948 20.8564
Fix2 7.9044 1.5676 18.0614

Fix1+MA 8.1765 2.6154 18.6388
Fix2+MA 7.8951 1.5504 18.0613

Optimal MA 16.3033 13.0875 27.6918
MA1 17.7622 14.0367 28.0962
MA2 17.2341 14.4233 30.8149
MA3 16.8626 13.6139 28.4319

T=20

Fix1 16.6797 7.6093 31.2747
Fix2 15.1708 3.1122 30.6817

Fix1+MA 15.3441 4.6476 30.6190
Fix2+MA 15.1608 3.0586 30.6814

Optimal MA 29.3260 23.9314 41.3094
MA1 31.5715 25.6522 43.1087
MA2 30.6943 26.2543 43.9738
MA3 30.0402 24.8735 42.9918

T=40

Fix1 30.3693 14.6129 50.6936
Fix2 28.0266 6.1289 49.4951

Fix1+MA 27.9065 7.9488 50.2724
Fix2+MA 27.9847 5.8799 49.4951

Optimal MA 50.3555 42.9099 59.3592
MA1 53.6836 45.2836 63.6320
MA2 51.9720 45.5609 60.0394
MA3 51.1360 43.7584 61.3035



Table 3: Utility Losses Versus Optimal Strategy (L = 200)

The table reports the utility losses, measured as percentage points of initial wealth, that one is
willing to give up to switch from a given strategy to the optimal dynamic one. The moving average
(MA) lag length L is set equal to 200 days. Fix1 is the standard fixed allocation rule and Fix2 is
such a rule accounting for predictability. Fix1+MA and Fix2+MA are those combined with the
MA. Optimal MA is the strategy that uses the MA optimally without any combination of fixed
rules, and MA1, MA2 and MA3 are ad hoc MA only strategies whose stock allocations are 100%,
Fix1 and Fix2, respectively when the MA indicates a ‘buy’ signal, and are nothing otherwise.

Dividend yield Term-spread Payout ratio

T=10

Fix1 8.8445 3.8948 20.8564
Fix2 7.9044 1.5676 18.0614

Fix1+MA 8.1253 2.4974 18.1453
Fix2+MA 7.8961 1.5472 18.0587

Optimal MA 15.1814 11.5260 24.8460
MA1 17.2853 14.0991 25.8806
MA2 16.3831 13.6423 28.1928
MA3 16.1825 13.3845 26.0471

T=20

Fix1 16.6797 7.6093 31.2747
Fix2 15.1708 3.1122 30.6817

Fix1+MA 14.9916 4.4603 30.5210
Fix2+MA 15.1677 3.0395 30.6817

Optimal MA 26.5693 21.4349 38.7195
MA1 30.6418 24.8091 41.2517
MA2 29.2722 24.6615 41.5063
MA3 28.7557 23.6940 40.5912

T=40

Fix1 30.3693 14.6129 50.6936
Fix2 28.0266 6.1289 49.4951

Fix1+MA 27.3408 6.9752 50.6936
Fix2+MA 28.0207 5.8872 49.4951

Optimal MA 45.3152 36.6855 55.4043
MA1 49.7462 40.3596 59.8256
MA2 48.7554 41.7133 56.5179
MA3 47.5196 39.0324 57.9567



Table 4: Utility Losses Versus Optimal Strategy for Arithmetic Average

The table reports the utility losses, measured as percentage points of initial wealth, that one is
willing to give up to switch from a given strategy to the optimal dynamic one. The moving average
(MA) lag length L is set equal to 200 days. Unlike Table 3, the MA is now based on the arithmetic
average instead of the geometric average. Fix1 is the standard fixed allocation rule and Fix2 is such
a rule accounting for predictability. Fix1+MA and Fix2+MA are those combined with the MA.
Optimal MA is the strategy that uses the MA optimally without any combination of fixed rules.

Dividend yield Term-spread Payout ratio

T=10

Fix1 8.8445 3.8948 20.8564
Fix2 7.9044 1.5676 18.0614

Fix1+MA 8.0907 2.5136 18.1525
Fix2+MA 7.9008 1.5466 18.0701

Optimal MA 15.0735 11.6682 24.9513

T=20

Fix1 16.6797 7.6093 31.2747
Fix2 15.1708 3.1122 30.6817

Fix1+MA 15.0358 4.3909 30.5307
Fix2+MA 15.1663 3.0526 30.7185

Optimal MA 26.8732 21.3547 38.9168

T=40

Fix1 30.3693 14.6129 50.6936
Fix2 28.0266 6.1289 49.4951

Fix1+MA 27.3783 6.6970 50.6600
Fix2+MA 28.0170 5.9626 49.6410

Optimal MA 45.7154 36.2868 55.8563



Table 5: Utility Losses Versus Optimal Strategy with Ex-dividend Price

The table reports the utility losses, measured as percentage points of initial wealth, that one is
willing to give up to switch from a given strategy to the optimal dynamic one. The moving average
(MA) lag length L is set equal to 200 days. Unlike Table 3, the MA is now based on the ex-dividend
price instead of the cum-dividend price. Fix1 is the standard fixed allocation rule and Fix2 is such
a rule accounting for predictability. Fix1+MA and Fix2+MA are those combined with the MA.
Optimal MA is the strategy that uses the MA optimally without any combination of fixed rules.

Dividend yield Term-spread Payout ratio

T=10

Fix1 8.8445 3.8948 20.8564
Fix2 7.9044 1.5676 18.0614

Fix1+MA 8.1528 2.7371 18.1492
Fix2+MA 7.8978 1.5212 18.0638

Optimal MA 16.0852 13.2148 25.7408

T=20

Fix1 16.6797 7.6093 31.2747
Fix2 15.1708 3.1122 30.6817

Fix1+MA 15.1637 4.5174 30.5592
Fix2+MA 15.1619 3.0577 30.7276

Optimal MA 28.6068 23.0312 40.0777

T=40

Fix1 30.3693 14.6129 50.6936
Fix2 28.0266 6.1289 49.4951

Fix1+MA 27.3789 6.7349 50.8201
Fix2+MA 28.0283 6.0231 49.6831

Optimal MA 47.1715 38.6881 56.7177



Table 6: Comparison Under Parameter Uncertainty (T=10)

The table reports both the utilities of the optimal learning, the standard fixed and the combination
of the fixed with MA (GMA) strategies, and the associated certainty-equivalent losses, measured
as percentage points of initial wealth, relative to the optimal learning strategy. The MA length is
200 days and investment horizon is T = 10 years. The predictability parameter β is captured by a
mean-reverting process starting from its long-term level β̄0 = 2.0715. The standard normal prior
on β0 has a prior mean b0 and standard deviation

√
ν0.

b0
√

ν0 Uoptl Ufix UGMA CEfix CEGMA

0 1 1.1371 1.0144 1.0204 12.27 11.67
0 2 1.1384 1.0144 1.0204 12.40 11.80
0 3 1.1340 1.0144 1.0204 11.96 11.36
0 4 1.1211 1.0144 1.0204 10.67 10.07

4 1 1.1470 1.0144 1.0204 13.26 12.66
4 2 1.1490 1.0144 1.0204 13.46 12.86
4 3 1.1451 1.0144 1.0204 13.07 12.47
4 4 1.1313 1.0144 1.0204 11.69 11.09

6 1 0.9989 1.0144 1.0204 -1.55 -2.15
6 2 1.0153 1.0144 1.0204 0.09 -0.51
6 3 1.0295 1.0144 1.0204 1.51 0.91
6 4 1.0349 1.0144 1.0204 2.05 1.45

7 1 0.8880 1.0144 1.0204 -12.64 -13.24
7 2 0.9151 1.0144 1.0204 -9.93 -10.53
7 3 0.9424 1.0144 1.0204 -7.20 -7.80
7 4 0.9606 1.0144 1.0204 -5.38 -5.98



Table 7: Comparison Under Parameter Uncertainty (T=5)

The table reports both the utilities of the optimal learning, the standard fixed and the combination
of the fixed with MA (GMA) strategies, and the associated certainty-equivalent losses, measured
as percentage points of initial wealth, relative to the optimal learning strategy. The MA length is
200 days and investment horizon is T = 5 years. The predictability parameter β is captured by a
mean-reverting process starting from its long-term level β̄0 = 2.0715. The standard normal prior
on β0 has a prior mean b0 and standard deviation

√
ν0.

b0
√

ν0 Uoptl Ufix UGMA CEfix CEGMA

0 1 0.5026 0.4567 0.4603 4.59 4.23
0 2 0.5035 0.4567 0.4603 4.68 4.32
0 3 0.5005 0.4567 0.4603 4.38 4.02
0 4 0.4914 0.4567 0.4603 3.47 3.11

4 1 0.5144 0.4567 0.4603 5.77 5.41
4 2 0.5147 0.4567 0.4603 5.80 5.44
4 3 0.5107 0.4567 0.4603 5.40 5.04
4 4 0.5002 0.4567 0.4603 4.35 3.99

6 1 0.4037 0.4567 0.4603 -5.30 -5.66
6 2 0.4143 0.4567 0.4603 -4.24 -4.60
6 3 0.4226 0.4567 0.4603 -3.41 -3.77
6 4 0.4241 0.4567 0.4603 -3.26 -3.62

7 1 0.3190 0.4567 0.4603 -13.77 -14.13
7 2 0.3375 0.4567 0.4603 -11.92 -12.28
7 3 0.3552 0.4567 0.4603 -10.15 -10.51
7 4 0.3658 0.4567 0.4603 -9.09 -9.45



Table 8: Comparison Under Model Uncertainty

The table reports the utility losses of the estimated optimal GMA, the optimal strategies derived
from the wrong models and the estimated fixed strategy, measured as percentage points of initial
wealth relative to the optimal strategy of knowing the true model. The moving average (MA) lag
length L and investment horizon T are set equal to 50, 100, 200 days and 5, 10 and 20 years,
respectively.

Estimated Optimal GMA Estimated Uncertain Model

L=50 L=100 L=200 Fixed Strategy Wrong Model 1 Wrong Model 2

Panel A: Dividend yield

T=5 5.2284 5.3326 5.3326 5.6161 6.5926 17.2875
T=10 13.5583 13.4199 13.3593 13.9894 15.4393 38.9453
T=20 28.2943 27.9709 27.8483 28.3660 31.0094 70.7737

Panel B: Term-spread

T=5 1.3607 1.4297 1.4198 1.8330 6.5926 9.8685
T=10 3.8922 3.7576 3.6517 5.4083 15.4393 23.4327
T=20 8.7347 8.5703 8.3598 11.2636 31.0232 50.3464

Panel C: Payout ratio

T=5 3.3718 3.4588 3.6420 4.1897 17.2875 9.8685
T=10 12.3133 12.3922 12.7245 16.4312 38.9453 23.4327
T=20 34.9361 35.3770 35.4674 40.1124 70.7737 50.3365



Figure 1: Effect of Lag Length

The figure plots the certainty-equivalent losses versus the moving average lag length measured in
days in the three predictable models.
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